

Guide for designing business

reference architectures aimed

for using NoSQL databases

2023

UNWE | Sofia

Introduction

Nowadays, when change and digital transformation are a necessity for the businesses to

remain competitive, companies that fail to keep up with change, risk being left behind or out

of business. Technologies developing at a faster pace from simple phones to sensors collecting

data and being used almost everywhere in our daily lives to computers, robotics, Artificial

Intelligence, cloud technologies, Big Data, Internet of Things, and more are considered the

basis of digital transformation in various spheres.

Digitization and digital transformation cover various types of processes in our lives,

progressing at an extremely fast pace. The adaptation of new technologies helps to increase

efficiency and productivity in the digitization of manual processes. There are countless benefits

to digital transformation, but one of the most important factors is that it helps businesses

become more efficient and organized. This process has the potential to make organizations

more agile, efficient and customer centric.

In the last decade, managing exponentially growing amounts of data has become an

increasingly challenging task. With the development of technologies, the digitization of

processes and the digital transformation of businesses, it leads to the generation of huge

amounts of data that must be stored, managed, and analysed through appropriate methods.

Technology development and data generation represent the initial and easiest step. The

challenges start with storing, processing, analysing and deriving results from the collected data.

In the past, when the development of information technology was initiated, the main type

of data collected was structured. With the digitization of more and more businesses and digital

transformation, the generation of different types of data - semi-structured and unstructured -

has also started. Unlike structured data, the other two types are extremely challenging to store

and process. The usual relational databases used for the storage of structured data are not

suitable for semi-structured and unstructured, which leads to the need to create and develop

new ways of storing different types of data. One of the key requirements for Big Data storage

is that it must handle massive amounts of data, with storage capacity continuing to grow

without disrupting the workflow.

In recent years, the financial sector has been developing and digitizing more and more,

which leads to the need for changes. For financial institutions to meet the demands, needs and

expectations of their customers, it is of utmost importance to make changes and adapt quickly

to evolving technologies. In addition to this, these types of institutions must manage extremely

large volumes of data while making changes to their systems without causing data loss or

problems for their customers. Financial services offered by banks, credit unions, accounting

companies, insurance companies, investment funds, stock exchanges and others need databases

that can adapt to the automation needs that non-relational databases can meet. NoSQL

databases can handle the storage and processing of large amounts of data, with their scalability

and providing better data processing performance.

Business Reference Architecture for NoSQL Databases for

Financial Services

A reference architecture is a document or set of documents that provide a recommended

structure and integrations of IT products to form a solution. RA incorporates industry best

practices, usually offering the optimal method for specific technologies. The reference

architecture offers IT best practices in an easy-to-understand format that guides the

implementation and use of complex technology solutions.

Reference architectures add value to companies in the following ways. Eliminate

possible confusion through standardization, make problem solving easier by applying precise

and clear guidelines. They provide resources for the design of IT architectures, teams and

systems. Reference architectures save time, effort, and money by using already available

resources, as well as optimize problem resolution by applying standard best practices and

support compatibility and reuse of components.

Using best practices when creating reference architectures improves efficiency, meets

regulatory requirements, and reduces the chance for errors. A reference architecture helps make

decisions about choosing the best model and way to create a software architecture to meet

business goals.

An approach for building reference architecture

Creating a reference architecture is an extremely challenging task in the absence of

predefined steps or a process to create it. There are five main steps that must be taken:

identifying the purpose, formulating principles, setting technical rules and standards, building

rules and standards, and applying context.

• In identifying the purpose, one must define the domain and scope of reference, who

are the stakeholders, how the architecture will be used, what are the constraints,

assumptions and environment with which it is associated.

• Formulation of principles occurs after the goal is successfully identified, the

components required for the architecture must be included. Elements must be aligned

with the company's core culture statements and values.

• Setting technical rules and standards happens after the formulation of the principles.

The next step is to decide on the frameworks and models that will need to be followed

in the company. In this part, all the necessary rules are laid down to achieve the

principles formulated earlier.

• Rules and standards must be established in the different departments of the company.

All possible challenges should be listed and the right standards should be selected for

each possible scenario.

• Rules and standards include the context of each situation. Most companies incorporate

a logical process, making it easy and possible to incorporate good practices.

When using best practices to create an enterprise reference architecture, it should be ensured

that the company and customers can reap its benefits. It can improve efficiency, meet regulatory

requirements and reduce the possibility of errors. Some of the good practices that can be applied

are:

• competitive advantage;

• comparative indicators;

• compliance standards;

• reuse of components and management

Designing a Business Reference Architecture for Financial

Services with NoSQL

Every single financial institution dealing with different types of financial services

generates, collects, processes and analyzes data of different types – structured, semi-structured

and unstructured in large volumes, which in turn leads to different needs of the institutions.

Depending on the type of financial institution depends on the type of data that is generated,

which in turn leads to different requirements for storage space, processing methods and analysis

tools.

With the implementation of non-relational databases in financial institutions and

adapting their historical systems to the new databases, it leads to the development and need of

services in the field of finance to maintain their competitive advantage, as well as to get ahead

of their competitors in the field.

The purpose of creating a reference architecture, whether for use only in one

organization or for universal and adaptation across multiple financial institutions, is to ensure

consistency and applicability of the use of given technologies in a particular organization.

Continuing the example of personal finance and more specifically banking or services

directly related to the customer, the following elements can be considered, which are based on

the various data collected about customers:

• Every financial institution has batch processes that do not require real-time or near-real-

time execution, but after exceeding a certain volume, their processing continues during

the institution's working hours, when activities need to happen quickly, and in this case

it delays the main work and customer service. This may lead to a point where these data

processes will not have finished before they need to start again. For many institutions,

in-memory processing is the most efficient way to achieve the required levels of

performance and scalability. In this type of processing, large volumes of data can be

stored in memory and massively parallel processing can be used to provide up to 1000

times faster performance for applications built on disk-based bases. When data is stored

and processed in memory, data traffic across the network is reduced or eliminated

completely. Traditional relational databases are not designed to process huge amounts

of data in real time, so a choice must be made about which workload to optimize. They

can handle either just the operational workload, which refers to day-to-day business

transactions, or the analytical workload, which refers to business intelligence systems

and analytics. It is impossible to implement the 2 types of load at the same time, because

relational databases cannot handle mixing them. SQL databases are designed to be

specialized at the cost of flexibility. On the other hand, with non-relational databases,

the performance and performance of database operations such as reading and writing,

data retrieval, and data analysis can be improved. This happens because in-memory

processing enables faster access to data, reducing the latency associated with

traditionally disk-based storage. This allows for much faster data access and processing

time, making it useful in processing time-sensitive financial services such as securities

trading, risk management, and fraud detection. In-memory processing enables fast, real-

time processing of large amounts of data, which can improve decision-making, increase

efficiency and reduce costs in financial services.

• Financial institutions maintain customer files composed of blobs (semi-structured and

unstructured data - documents related to the customer-product hierarchy) classified

according to certain characteristics. A characteristic feature, however, is that blobs have

a lot of context because they originate and are stored in relation to a specific customer

and banking/financial transaction registered in a computer system. No processing is

done on them that requires analysis of their content, only searching for signature

verification and visualization/printing during on-demand service

Based on the requirements that may arise from financial services, together with the

theoretical literature review, as well as the practical one of existing financial services solutions

on various non-relational databases, a model of a universal component reference architecture

for financial services was created. services

➢ Conceptual model

The conceptual model of the reference architecture for financial services presented in

Figure 1 represents the general structure and elements of which it consists, as well as the

necessary data and systems to achieve the business requirements, which means the maintenance

of company processes, recording of business events and performance tracking. An approach to

building a reference architecture is defined, which consists of five main steps. The created

conceptual model of the business reference architecture for financial services is the result of

the first two steps - the identification of the goal and the formulation of the goal. The purpose

of the Business Reference Architecture for Financial Services is to adapt the modern ways of

storing Big Data for different types – semi-structured and unstructured data – to financial

institutions that continue their rapid development and digital transformation.

The reference architecture consists of 3 layers: Data Storage System, Integration Layer

and Data Storage Server, which are connected to financial services processing systems .

❖ Data storage system

The data storage system is the system that stores the data after it has been

received from the financial services processing systems.

❖ Integration layer

The integration layer in the reference architecture refers to the components

responsible for the integration of data storage systems and their storage servers. This

layer provides a centralized platform for management, data movement and

communications between different systems. The integration layer consists of data

connectors between the storage system and the server.

❖ Data Storage Server

The data storage server is where the data that arrives through the integration

layer and the data connectors from the data warehousing systems that enter the data

warehousing system from the financial services processing systems is stored.

Figure 1 Conceptual model

➢ Logical model

The logical model lays down the technical rules and standards for the creation of the

business reference architecture, and it lays down the rules so that the set principles can be

achieved. Through the financial services processing system, data from financial institutions

enters, which are subsequently stored, processed and analyzed in the remaining layers of the

reference architecture. Figure 2 presents the logical model of the financial services business

reference architecture, with each of its layers discussed in detail below.

❖ Data storage system

In the first layer of the reference architecture, the so-called A data storage

system can host 1 or more of the four types of non-relational databases – document-

oriented, key-value, wide-column, and graph databases. The types of NoSQL databases

were discussed at a theoretical level, such as what they are capable of in Chapter I, and

in this chapter, they were discussed at a practical level - what applications related to

financial services are built on specific non-relational databases, to help the selection of

specific base

The choice of such is realized based on the following elements, which should

be considered carefully before proceeding to a specific NoSQL database:

▪ The financial institution's existing system(s) that will need to be

migrated to the new base

▪ Type of financial services in which the financial institution deals

▪ Types of data that the financial institution generates based on the

financial services it provides – structured, semi-structured and

unstructured data

❖ Integration layer

Based on the non-relational base that is selected in the data storage system based

on the considered elements, the way to connect to a specific NoSQL is selected, which

is positioned in the integration layer of the reference architecture.

❖ Dedicated NoSQL database server

Depending on the selected non-relational database in the data storage system,

the subsequent selection of a way to connect a specific NoSQL database, a specific

NoSQL server is reached in which the data of the financial institution is stored.

Figure 2 Logical model

➢ Physical model

The created physical model in Figure 3 is implemented with concrete examples of non-

relational databases and connectors for them to Hadoop. Each of these elements can be replaced

according to the needs of the financial institution that wants to adapt this reference architecture

with NoSQL databases for its own needs.

In the first layer, which is the data storage system, the four types of non-relational

databases - document-oriented, key-value, wide-column and graph databases - can be located,

and in this layer the particular database that is selected is located. through the evaluation and

selection method of NoSQL databases for financial services. Bases of each type are located in

the physical model:

▪ Document – oriented database: MongoDB

▪ Key-value database: Amazon DynamoDB

▪ Wide – column database: HBase

▪ Graph database: Orient DB

In the second layer, the so-called integration layer is where the connecting elements

with the different NoSQL databases are located, e.g. NiFi, Spark Connector and other types of

Data Connectors suitable for the other types of non-relational databases. The specific data

connectors from the data storage system to the server of the specific NoSQL database are as

follows:

▪ For the document-oriented MongoDB database, the Mongo Spark Connector

can be used

▪ Amazon DynamoDB key-value database can be used Amazon EMR

Connector

▪ For wide-column HBase, the Spark HBase Connector can be used

▪ For the Orient DB graph database, the Orient DB Spark Connector can be

used

The third layer is a server of the specific NoSQL base, and Hadoop has been chosen for

the implementation of the physical model of the reference architecture for financial services.

Figure 3 Physical model

An approach to the use of the designed reference architecture leading

to the creation of an ICT architecture

The ICT Architecture (Information and Communication Technologies) provides a

conceptual model, specifying at a basic level the elements of the ICT architecture (application,

databases, technological ICT elements), as well as the relationships between them. Based on

the reference architecture for financial services with NoSQL databases, which was created in

the previous point and demonstrated in Figure 3, a specific ICT architecture will be created,

which will be implemented and tested in the following points.

The developed physical model for the reference architecture contains 3 layers - a data

storage system, an integration layer and a NoSQL-specific layer, and in the previous point we

discussed in detail the different types of non-relational databases, with different types of data

connectors that can be connected with the NoSQL specific layer. In the creation of the ICT

architecture for the data storage system (the first layer), the document-oriented non-relational

database MongoDB will be used, since it has been selected through the method created in the

previous point and meets the requirements and has already created a financial service. which

uses the data type with which the architecture will be tested. The second integration layer will

use the Apache Spark Connector for MongoDB. Due to the fact that support for MongoDB's

direct connector to Hadoop is deprecated, we will use this one through Apache Spark. The third

layer remains for the Hadoop big data system that we will use for storage – Figure 4.

Figure 4 Specific ICT architecture

Application of a reference architecture design method for financial

services

 With the increasing automation and digitization of processes, and the influx of larger

volumes of data of various types – mostly semi-structured and unstructured, businesses face

the enormous challenge of collecting, storing and analyzing unstructured data. Financial

institutions and the services they offer are fast-growing businesses, and for this reason they

must adapt quickly and in a timely manner to the unfolding technologies and to the increasing

demands of customers, as well as to constant competition.

Based on the detailed analysis of scientific literature related to non-relational databases

and their use for the implementation of financial services systems, as well as on the basis of

the developed business solutions, a business reference architecture was developed, consisting

of a data storage system, an integration layer and a specific NoSQL server that was developed

and reached the realization of a physical model. Each of the four types of non-relational

databases can be deployed in this model, either in combination together or separately.

The ICT architecture that was tested practically consists of a data storage system –

MongoDB, an integration layer – Apache Spark Connector for MongoDB and a specific

NoSQL server, in this case the Hadoop distributed file system was used.

Hadoop is a technology designed to store large volumes of data distributed across

different clusters. MongoDB, on the other hand, is an extremely powerful document-oriented

NoSQL database. Combined together, Hadoop and MongoDB can create a complete

application for handling and analyzing Big Data. Hadoop takes the data that is stored in

MongoDB, merges with the data it has and thus generates analytics as well as machine learning

models. The results are fed back into MongoDB, thereby being used to create better customer

offers, to better identify and detect fraud attempts, to better predict changes in exchanges, and

more.

The MongoDB Connector for Spark provides the integration between MongoDB and

Apache Spark, and from there, data is then extracted from Hadoop. Through the connector, the

user has access to all Apache Spark libraries that can be used with the data that is stored in the

NoSQL databases

 Figure 5 demonstrates how the connection is made through the MongoDB connector

for Apache Spark, as well as all the libraries it accesses.

The MongoDB data connector over Spark enables the integration of the document-

oriented database MongoDB and Apache Spark, allowing users to implement complex analyzes

with large data sets. In addition to enabling read operations, the connector also enables data to

be written back to MongoDB through the Spark connector. This provides an outstanding

opportunity to record results from the processing performed in Spark to be written back to

MongoDB and then used for further analysis.

The following components are required for the implementation of the physical model

of the business reference architecture:

- Hadoop

- Apache Spark connector for MongoDB

- Python

Figure 5 Connection of MongoDB and Apache Spark. Resource: Internet

At the moment, the ICT architecture is implemented at the local level - a MongoDB

connection through the Apache Spark connector to Hadoop. It starts with a local Python

installation, as PySpark will be used. To install and configure Python, the necessary files are

downloaded, which are run on the local machine, using standard installation software available.

After the completion of and, the available version of Python on the machine is checked to

ensure that the process completed correctly and work on the next steps can be continued. In the

Command Prompt, type the following python –version command, and if the installation process

was successful, the following result should appear - Figure 6.

 Installing Spark locally is done after selecting the configurations and downloading the

necessary files to the machine. Upon proper installation of Spark and entering the following

command in the Command Prompt: C:\Spark\spark-3.1.1-bin-hadoop2.7\bin\spark-shell,

Apache Spark is started and the screen below is displayed – Figure 7.

When Apache Spark is properly installed and started, in addition to the Command

prompt message, we are provided with a browser UI that can be used to monitor the various

processes being performed - Figure 8, at the following address: http://localhost :4040/.

Figure 6 Result of correct installation of Python

Figure 7 Result of correct installation of Apache Spark

 The next step to implement the physical model of the business reference architecture

that needs to be done is the Hadoop installation. It is downloaded, the necessary machine

configurations are made, as well as additional configurations are added to some of the Hadoop

files that can be found in the appendices of this thesis. To verify that the installation was

successful, type the following command in the machine's Command prompt: cd Hadoop-

2.9.2\sbin , and the following should appear in Figure 9.

In the browser, the following address: http://localhost:50070/ opens the user interface

through which, if Hadoop is started correctly, the data clusters and others can be traced.

Figure 7 A local browser-level interface for monitoring the execution of Apache Spark tasks

Фигура 8 Successful installation of Hadoop

The last step to implement the physical architecture is the installation of the Apache

Spark connector for MongoDB, which is implemented using Pyspark and the following --

packages commands, and then from the options provided, mongo-spark-connector is selected,

which is installed on the machine.

 The initialization of the connections happens through the following code:

./bin/pyspark --conf

"spark.mongodb.read.connection.uri=mongodb://localhost:27017/FinancialData.Stocks?readPreferenc

e=primaryPreferred"

 --conf

"spark.mongodb.write.connection.uri=mongodb://localhost:27017/FinancialData.Stocks"

 --packages org.mongodb.spark:mongo-spark-connector_2.12:10.1.1

➢ Application of typical unstructured data in financial services

Every single financial service works with different types of data – structured, semi-

structured and unstructured, collected from different sources in different formats. The

established reference architecture for financial services with the document-oriented database

Figure 9 Interface of Hadoop

MongoDB connected through an Apache Spark connector to Hadoop works with data in a

document version.

This type of unstructured data is typical of many services in core banking, e-payments,

stocks, bonds, personalization, e-wallet, insurance, customer clearing, customer management

and others. For this reason, the reference architecture created has been tested with data such as

contracts, slips, emails, reports, stock, and bond data, and more. Part of this data is mock-up,

generated additionally, because the data with which financial services work is extremely

sensitive and cannot be found with free access.

➢ Testing reference architecture with financial data

• Source of financial data – shares

Data about and related to customers that is generated, used and stored in financial

institutions is extremely sensitive and should not be freely distributed, and should also be stored

according to the requirements for the protection of personal data. Financial data can be very

hard to find freely on the internet, and for testing purposes, freely available stock data from

Forbes, Nasdaq, Nyse and SP500 in json format was used.

Forbes, Nasdaq, Nyse and SP500 data contain the following fields:

Field Value

currency Съответната валута

 symbol Символ

 exchangeName Обменно име

 instrumentType Тип инструмент

 firstTradeDate Първа дата на продаване

 regularMarketTime Регулярно време на пазара

 gmtoffset": -18000

 timezone Времева зона

 exchangeTimezoneName Времева зона на обмен

 regularMarketPrice Редовна цена на пазара

 chartPreviousClose

 priceHint Подсказка за цената

 currentTradingPeriod Настоящ период за търгуване

 pre

 timezone Часова зона на предварителната продажба

 start Стартова дата

 end Крайна дата

 gmtoffset Разлика от времето по Гринуич

 regular

 timezone": "EST", Часова зона на регулярна продажба

 "start": 1670855400, Стартова дата

 "end": 1670878800, Крайна дата

 gmtoffset Разлика от времето по Гринуич

 post

 timezone Часова зона след продажба

 start

 end Крайна дата

 gmtoffset Разлика от времето по Гринуич

 dataGranularity Детайлност на данните

 range Диапазон

 validRanges Валидни времеви диапазони

Table 1 Fields with of Forbes, Nasdaq, Nyse и SP500

 Stock data from the various sources - Forbes, Nasdaq, Nyse and SP500 is over 10GB,

which will be loaded into the architecture that is realized in this chapter.

• Loading financial data
The created architecture can exchange data from MongoDB through the MongoDB

connector to Apache Spark and vice versa. Loading data from Hadoop to Mongo is

implemented using PySpark.

To do this, it is first necessary to add the necessary libraries and create a Spark session with

the following code:

spark = SparkSession.builder.FinancialTest("HadoopToMongoDB")

.config("spark.mongodb.output.uri","mongodb://localhost:27017/FinancialData.Stocks ")

.getOrCreate()

With the code below, we load the data from Hadoop into PySpark Frame:

df = spark.read.format("com.mongodb.spark.sql.DefaultSource").option("uri", "mongodb://

http://localhost:50070/FinancialData.Stocks.load()

Finally, we write the data from Hadoop to MongoDB, using the following code:

http://localhost:50070/

 df.write.format("com.mongodb.spark.sql.DefaultSource").mode("append").option("ur

i", "mongodb://localhost:27017/FinancialData.Stocks") .save()

 Figure 11 visualizes the data loaded through the Apache Spark connector to MongoDB from

Hadoop.

client = MongoClient()

db = client['Financial_data']

collection = db['stocks']

spark = SparkSession.builder

 .appName("Financial Stock")

 .getOrCreate()

df = spark.read.format("com.mongodb.spark.sql.DefaultSource")

 .option("database", "Financial_data")

 .option("collection", "stocks")

Figure 10 Loaded data from Hadoop to MongoDB

 .load()

df = df.filter((col("symbol") == "ACGL") & (col("firstTradeDate") >= "2017-05-02") &

(col("firstTradeDate") <= "2017-10-10"))

result = df.groupBy(year("date").alias("year"), month("date").alias("month"))

 .agg({"close": "avg"}) .orderBy("year", "month")

result.write.format("com.mongodb.spark.sql.DefaultSource").option("database",

"Financial_data") .option("collection", "stock_analysis") .mode("overwrite") .save()

client.close()

spark.stop()

 The generated PySpark program uses the stock data that was loaded at the start of the

reference architecture experiment from Hadoop to MongoDB. The first step is to connect to

MongoDB and then open the Spark session. The data is filtered by the name of the shares, and

subsequently only those whose first sale date is between the set interval are searched. The

program then groups the result by date and outputs the average value of the price of the

particular stock for the entire period in the interval. The data is saved to the MongoDB database

and the session is closed.

Източници

Kate Blumberg, “7 Big Data Use Cases in Financial Services and Benefits of Data Science,”

SAFEGRAPH, Nov. 04, 2021. https://www.safegraph.com/blog/top-big-data-use-cases-

financial-services (Opened on Feb 24, 2022)

“Big Data in Finance - Your Guide to Financial Data Analysis,” Talend.

https://www.talend.com/resources/big-data-finance/ (Opened on June 15, 2022)

Mark Smallcombe, “Structured vs Unstructured Data: 5 Key Differences,” Integrate.io, Feb.

16, 2023. https://www.integrate.io/blog/structured-vs-unstructured-data-key-differences/

(Opened on June 18, 2022)

“What is Apache Hadoop?,” IBM. https://www.ibm.com/analytics/hadoop (Opened on August

29, 2022)

“Advantages of Hadoop | Disadvantages of Hadoop,” RF Wireless World.

https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-

Hadoop.html

“Apache Hadoop Architecture Explained,” Phoenixnap, May 25, 2020.

https://phoenixnap.com/kb/apache-hadoop-architecture-explained (Opened on September16,

2022)

“Banking industry architecture,” IBM.

https://www.ibm.com/cloud/architecture/architectures/banking/reference-architecture

(Opened on October 2, 2022)

“MongoDB for Financial Services,” MongoDB.

https://www.mongodb.com/industries/financial-services (Opened on October 2, 2022)

“Hadoop and MongoDB,” MongoDB. https://www.mongodb.com/hadoop-and-mongodb

(Opened on February 11, 2023)

“DATA PLATFORMS IN FINANCIAL SERVICES.” Medici. [Online]. Available:

https://content.dataversity.net/rs/656-WMW-918/images/Data-Platforms-in-Financial-

Services-NoSQL-Edge-Whitepaper.pdf (Opened on February 27, 2023)

“MongoDB Connector for Apache Spark,” MongoDB.

https://www.mongodb.com/products/spark-connector (Opened on March 11, 2023)

MEDICI, “Why Financial Services Should Look to NoSQL.” [Online]. Available:

http://pages.aerospike.com/rs/229-XUE-

318/images/Aerospike_Wp_Why_Financial_Services_Should_Look_to_NoSQL.pdf (Opened

on March 11, 2023)

https://www.safegraph.com/blog/top-big-data-use-cases-financial-services
https://www.safegraph.com/blog/top-big-data-use-cases-financial-services
https://www.talend.com/resources/big-data-finance/
https://www.integrate.io/blog/structured-vs-unstructured-data-key-differences/
https://www.ibm.com/analytics/hadoop
https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Hadoop.html
https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Hadoop.html
https://phoenixnap.com/kb/apache-hadoop-architecture-explained
https://www.ibm.com/cloud/architecture/architectures/banking/reference-architecture
https://www.mongodb.com/industries/financial-services
https://www.mongodb.com/hadoop-and-mongodb
https://content.dataversity.net/rs/656-WMW-918/images/Data-Platforms-in-Financial-Services-NoSQL-Edge-Whitepaper.pdf
https://content.dataversity.net/rs/656-WMW-918/images/Data-Platforms-in-Financial-Services-NoSQL-Edge-Whitepaper.pdf
https://www.mongodb.com/products/spark-connector
http://pages.aerospike.com/rs/229-XUE-318/images/Aerospike_Wp_Why_Financial_Services_Should_Look_to_NoSQL.pdf
http://pages.aerospike.com/rs/229-XUE-318/images/Aerospike_Wp_Why_Financial_Services_Should_Look_to_NoSQL.pdf

