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1. Integration of Big data system HADOOP with a 

Supercomputer 

In NCC Bulgaria, a Big Data System HADOOP managed by UNWE is integrated with 

Supercomputer located in Tech Park Sofia for the purpose of extensive and complex processing. 

The exact structure of the Big Data System is consisting of 4 Hadoop clusters – Centralized one 

located in UNWE with about 4,5 PB disk space and 3 other Hadoop clusters located in Technical 

university Gabrovo, in Plovdiv university and in University Ruse- fig.1 

 

Fig. 1 

Generally, the role of the presented infrastructure is to provide the necessary Data security and to 

provide Data quality. While in this Guide we will not emphasis on Data security, the focus of Data 

Quality Management is on the functioning concentrated on the Big Data Hadoop clusters (HPDA 

systems). Data Quality Management is provided on 2 phases: Entrance Data Management and 

Final Data Management – fig.2. 
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Fig.2 

Entrance Data Management provides Data collection using all main networks – MAN, WAN, 

GSM 4G/5G, LoRaWAN and International LoRaWAN as TTN. The process of collection is 

organized in 2 ways – storing of data (mainly structured and semi-structured data, as well as some 

non-structured data as pictures and graphics) and passing true data streams (mainly video and 

audio). After data is collected, it goes to Initial enrichment and Check and execute Data quality.  

When integrating a Big data system as Hadoop system with a Supercomputer, Initial data 

enrichment plays a crucial role in preparing raw data for high-performance computing workflows. 

The Initial enrichment covers: 

- Extract data from one or more original sources – through the mentioned 5 types of multi-

source networks; 

- Transform data into the way processing processes require it - grouping, standardizing, 

sorting, sorting, merging, recoding, creating surrogate keys; 

- Load data into respective processing storage - full load, incremental load, default load, 

overlap load, interval load; 

- Provide a unified point of view - provides a unified view of the data, aggregation, formation 

of information-knowledge from the data; 

- Provide historical context - creates a long-term view of data so that older data sets can be 

viewed alongside newer data, as well as whether the new data matches the content of the 

old data. 

The execution of Data Quality consists of 2 steps – Discovering of the level of the quality and 

Correction of data to the appropriate level of quality – execution of the needed quality.  This covers 

the following elements of the Data quality: 

i. Accuracy - verifiable source 

ii. Completeness - provides all necessary values 

iii. Consistency - the existence of some data requires the existence of other specified data 

iv. Validity - collection is against specified business rules, in a specified format and range 

v. Uniqueness - no duplication or overlapping of values 
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vi. Timeliness - data exists when needed for use 

According to MIT, correcting data quality and removing errors from poor-quality data ensures an 

average of 15%-25% of companies' annual revenue, and at the same time, according to IBM, 

maintaining Data Quality requires billions of USD per year worldwide. For this reason, the main 

attention of the current Guide is on Data Quality Management, applying Hadoop clusters as 

entrance point to the data before treatment of the Supercomputers (High Performance computers).   

 

2. Architecture of Hadoop system supporting Entrance Data 

Management 

The IT Architecture of Hadoop system (one or a few Hadoop clusters) supporting the Entrance 

Data Management in a complex Hadoop-Supercomputer is presented in figure 3. 

 

Fig.3 

This Architecture was developed and tested in the Scientific Infrastructure of the Centralized 

Hadoop cluster in UNWE. 

The hearth of the approach is using Spark for Hadoop working together with MS SQL Server, 

where Spark is installed in many as possible Hadoop data nodes. The purpose of such Spark 

process is to provide metrics for the data and all data to be evaluate according of these metrics. 

Example of such metrics are: Content Constraints (min, max, average, count), checks (>, <, =, 

metric-target value, metric-metric), metric format and value, blanks allowed, amount rejected, 

number of data/sec, t-per-generation, function on filling in empty field, allowed uniqueness. These 

metrics will be applied in Spark script, receiving as a result for each data item appropriate levels 

from the 6 Levels of Data quality: Accuracy, Completeness, Consistency, Validity, Uniqueness, 

Timeliness. There are 2 types of Entrance Data Management – Process based and AI based. 

Process based data quality management is recommended for structured and semi-structured data, 

while AI based data quality management is recommended for semi-structured and non-structured 

data.  

The incoming data is stored in HDFS (core Hadoop file system) and from there data is transferred 

or to Spark DataFrames for treating by Spark, or to MS SQL Server files for treating by MS SQL 

Server. The IT Architecture for the process of Metrics analysis and enrichment is presented in 

figure 4. 
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Fig.4 

In the figure are presented the recommended tools and Libraries to use for the Metrics calculation 

and enrichment. It is important to mention that form the processing data quality evaluation and 

enrichment, the Library Deequ - PyDeequ is used, which works only on Spark. On the figure are 

mentioned the ways of providing AI based Entrance Data Management, using Machine Learning 

and/or Deep Learning. The most of the data in the business requiring quality enrichment are 

structured and semi-structured, and for this we will pay special attention on Procedural based 

Entrance Data Management, using Deque Library. 

Lambda Software Architecture is a data processing design pattern that aims to handle massive 

quantities of data (Big Data) by combining both batch processing and real-time (stream) processing 

methods using 2 paths for each processing. It's designed to provide a comprehensive, accurate, and 

low-latency view of data, addressing the challenges of processing large volumes of rapidly 

generated information. The Batch path is responsible for processing all historical data. It stores the 

master dataset (an immutable, append-only record of all data) and pre-computes results (batch 

views) from this complete dataset. The Real-time path handles real-time data that hasn't yet been 

processed by the batch layer. It processes data streams as they arrive, providing low-latency, near 

real-time insights. Due to its focus on speed, the views generated by the Real-time path might be 

less accurate or complete than those from the batch path. The results from Batch path and Real-

time path is integrated into a Service path, integrating data from both paths and making the 

processed data available for queries to end-users and applications. In our Guide, we recommend 

using and we have used Apache HBase. In the Lambda Software Architecture New the incoming 

data is fed into both the Batch path and the Real-time simultaneously. The Batch path processes 

this data along with all historical data to create accurate, pre-computed views. The Real-time path 

processes the incoming data in real-time to provide immediate, though potentially less precise, 

insights. The Service path then combines these two sets of views, allowing users to query all data, 

including the most recent, with low latency. Once the Batch path has processed the data that the 

Real-time path was handling, the speed layer's temporary views for that data are superseded. 

Lambda Software Architecture is well-suited for scenarios requiring both historical analysis and 

immediate insights from large datasets, like: Social Media Analytics (Sentiment analysis, trend 

detection), Fraud Detection (Analysing historical transaction patterns to detect anomalies in real-

time), IoT Data Analytics (Processing sensor data for predictive maintenance, real-time 
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monitoring), Personalized Marketing Campaigns (Analysing customer behaviour to deliver real-

time recommendations), Real-time Dashboards and Reporting (Providing up-to-date business 

intelligence). 

 

3. Essence of DEEQU Library 

Deequ Library provides a robust and scalable framework for integrating data quality checks 

directly into your data pipelines, helping to ensure the reliability and trustworthiness of your data. 

The essence of the Deequ library can be summarized as "unit tests for data" at scale, built on 

Apache Spark. 

Here's a breakdown of its key components and purpose: 

• Unit Tests for Data: Just like a programmer writes unit tests for the code to ensure it 

behaves as expected, Deequ allows to define "unit tests" for the data. These tests are 

expressed as constraints that specify what constitutes "good" data. 

• Data Quality Measurement: Deequ measures various aspects of data quality by 

computing metrics on large datasets. These metrics can include:  

o Completeness: Are there missing values? 

o Uniqueness: Are there duplicate entries where there shouldn't be? 

o Validity: Do values conform to expected patterns or ranges (e.g., "high" or "low" 

for a priority column, non-negative numbers)? 

o Consistency: Are relationships between columns as expected (e.g., correlation)? 

o Schema conformance: Does the data adhere to its expected structure (column 

names, types)? 

• Built on Apache Spark: Deequ leverages the distributed processing power of Apache 

Spark, making it suitable for analyzing and validating very large datasets (billions of 

rows) efficiently. This is crucial for big data environments. 

• Proactive Error Detection: The core idea is to find data errors early in the data pipeline, 

before the data is consumed by downstream systems, machine learning models, or used for 

critical business decisions. By catching issues early, a programmer can "quarantine" and 

fix bad data, preventing cascading failures or incorrect outputs. 

• Key Functionality:  

o Metrics Computation: Automatically calculates various data quality statistics 

(e.g., min, max, mean, completeness, distinctness, correlation). 

o Constraint Verification: Allows users to define custom data quality rules 

(constraints) and then verifies if the data satisfies these rules. It generates a report 

indicating successes and failures. 
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o Constraint Suggestion: Can automatically profile data and suggest a set of 

reasonable constraints based on the observed data patterns, helping users get started 

quickly. 

o Metrics Repository: Provides mechanisms to persist and track data quality metrics 

over time, enabling monitoring and anomaly detection. 

o Anomaly Detection: Can be used to detect unusual changes in data quality metrics 

over time, signaling potential data issues. 

 

In Deequ Library there are Methods for assessing data quality through specific quality parameters, 

where one method is used for one quality parameter. The set of methods are: 

• ApproxCountDistinct 

• ApproxQuantile 

• ApproxQuantiles 

• Completeness 

• Compliance 

• Correlation 

• CountDistinct 

• DataType 

• Distinctness 

• Entropy 

• Maximum 

• Mean 

• Minimum 

• MutualInformation 

• PatternMatch 

• Size 

• Sum 

• UniqueValueRatio 

• Uniqueness 

Each method accepts external data and generate as a result - the corresponding estimate via the 

parameter. 
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Before we define checks on the data, we want to calculate some statistics on the dataset; we call 

them metrics. Deequ supports the following metrics – Table 1. 

Table 1 

Metric Description Usage Example 

ApproxCountDistinct 

Approximate number of 

distinct value, computed 

with 

HyperLogLogPlusPlus 

sketches. 

ApproxCountDistinct("review_id") 

ApproxQuantile 
Approximate quantile of a 

distribution. 

ApproxQuantile("star_rating", 

quantile = 0.5) 

ApproxQuantiles 
Approximate quantiles of a 

distribution. 

ApproxQuantiles("star_rating", 

quantiles = Seq(0.1, 0.5, 0.9)) 

Completeness 
Fraction of non-null values 

in a column. 
Completeness("review_id") 

Compliance 

Fraction of rows that 

comply with the given 

column constraint. 

Compliance("top star_rating", 

"star_rating >= 4.0") 

Correlation 

Pearson correlation 

coefficient, measures the 

linear correlation between 

two columns. The result is 

in the range [-1, 1], where 1 

means positive linear 

correlation, -1 means 

negative linear correlation, 

and 0 means no correlation. 

Correlation("total_votes", 

"star_rating") 

CountDistinct Number of distinct values. CountDistinct("review_id") 

DataType Distribution of data types 

such as Boolean, 
DataType("year") 
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Fractional, Integral, and 

String. The resulting 

histogram allows filtering 

by relative or absolute 

fractions. 

Distinctness 

Fraction of distinct values 

of a column over the 

number of all values of a 

column. Distinct values 

occur at least once. 

Example: [a, a, b] contains 

two distinct values a and b, 

so distinctness is 2/3. 

Distinctness("review_id") 

Entropy 

Entropy is a measure of the 

level of information 

contained in an event 

(value in a column) when 

considering all possible 

events (values in a 

column). It is measured in 

nats (natural units of 

information). Entropy is 

estimated using observed 

value counts as the 

negative sum of 

(value_count/total_count) 

* 

log(value_count/total_cou

nt). Example: [a, b, b, c, c] 

has three distinct values 

with counts [1, 2, 2]. 

Entropy is then (-

1/5*log(1/5)-2/5*log(2/5)-

2/5*log(2/5)) = 1.055. 

Entropy("star_rating") 

Maximum Maximum value. Maximum("star_rating") 

Mean 
Mean value; null values are 

excluded. 
Mean("star_rating") 
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Minimum Minimum value. Minimum("star_rating") 

MutualInformation 

Mutual information 

describes how much 

information about one 

column (one random 

variable) can be inferred 

from another column 

(another random variable). 

If the two columns are 

independent, mutual 

information is zero. If one 

column is a function of the 

other column, mutual 

information is the entropy 

of the column. Mutual 

information is symmetric 

and nonnegative. 

MutualInformation(Seq("total_vote

s", "star_rating")) 

PatternMatch 

Fraction of rows that 

comply with a given 

regular experssion. 

PatternMatch("marketplace", 

pattern = raw"\w{2}".r) 

Size 
Number of rows in a 

DataFrame. 
Size() 

Sum 
Sum of all values of a 

column. 
Sum("total_votes") 

UniqueValueRatio 

Fraction of unique values 

over the number of all 

distinct values of a column. 

Unique values occur 

exactly once; distinct 

values occur at least 

once. Example: [a, a, b] 

contains one unique value 

b, and two distinct values a 

and b, so the unique value 

ratio is 1/2. 

UniqueValueRatio("star_rating") 
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Uniqueness 

Fraction of unique values 

over the number of all 

values of a column. Unique 

values occur exactly 

once. Example: [a, a, b] 

contains one unique value 

b, so uniqueness is 1/3. 

Uniqueness("star_rating") 

 

4. Main operations for Data Quality Management with Deequ 

Library 

The main operations for data quality management with Deequ library can be categorized into 

these core components: 

4.1. Metrics Computation: 

o Deequ calculates various data quality metrics (statistics) on a dataset. These 

metrics provide insights into the properties of your data. 

o Examples of metrics include:  

▪ Size(): The total number of rows. 

▪ Completeness("column_name"): The percentage of non-null values in a 

column. 

▪ Uniqueness("column_name"): The percentage of unique values in a 

column. 

▪ Distinctness("column_name"): The ratio of distinct values to the total 

number of values. 

▪ Minimum("column_name"), Maximum("column_name"), 

Mean("column_name"), Sum("column_name"), 

StandardDeviation("column_name"): Statistical measures for 

numerical columns. 

▪ Correlation("column1", "column2"): Measures the correlation 

between two numerical columns. 

▪ Compliance("column_name", "expression"): Checks if a certain 

expression holds true for a column. 

o Deequ leverages Spark's distributed processing capabilities to efficiently compute 

these metrics on large datasets. 

 

4.2. Constraint Verification: 

o This is where the designer can define its data quality expectations as a set of 

constraints. Deequ then verifies if the data adheres to these predefined constraints. 

o It is possible to define checks with a Check object, specifying a CheckLevel (e.g., 

Error, Warning) and then add various constraints to it. 
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o Examples of constraints that can be defined:  

▪ isUnique("column_name"): Ensures all values in a column are unique. 

▪ hasSize(_ >= min_size): Verifies the dataset has at least a certain 

number of rows. 

▪ isNotNull("column_name"): Checks for the absence of null values. 

▪ hasDataType("column_name", DataType.StringType): Verifies the 

data type of a column. 

▪ hasMin("column_name", min_value): Checks if the minimum value in 

a column meets a threshold. 

▪ isContainedIn("column_name", Seq("value1", "value2")): 

Ensures column values are from a predefined set. 

▪ satisfies("column_name", "column_name > 0"): Allows defining 

custom SQL-like expressions for validation. 

o Deequ generates a data quality report (VerificationResult) indicating whether 

each constraint passed or failed. This report can be converted to a DataFrame for 

easy analysis. 

 

4.3. Constraint Suggestion: 

o If it is unsure what constraints to define, Deequ can help by automatically 

suggesting potential data quality constraints based on profiling your data. 

o The ConstraintSuggestionRunner profiles the data, infers patterns, and 

proposes a set of meaningful constraints that you can then review and incorporate 

into your verification suite. This is particularly useful for exploring new datasets 

or when the designers don't have explicit data quality requirements yet. 

 

4.4. Anomaly Detection: 

o Deequ can detect anomalies in data quality metrics over time. Instead of fixed 

thresholds, it can learn the normal behaviour of metrics and flag deviations as 

anomalies. This is crucial for continuous data quality monitoring in evolving data 

pipelines. 

 

4.5. Use Metrics Repository (Persistence and Querying): 

o Deequ provides a MetricsRepository interface to store and load computed 

metrics. This allows the programmer to persist its data quality check results for 

historical analysis, trend monitoring, and auditing. 

o The programmer can save results to various systems, such as file systems (e.g., 

JSON), databases (e.g., InfluxDB with custom adapters), or in-memory. 
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4.6. Incremental Metrics Computation: 

o For large, partitioned datasets, Deequ supports incremental metrics computation. 

This means it can efficiently update metrics for new or changed partitions without 

re-reading the entire dataset, saving significant computational resources and time. 

 

5. Installation steps of Amazon Deequ on Hadoop Spark 

Installing Amazon Deequ on Hadoop Spark involves adding the Deequ library as a dependency to 

the project. The specific steps depend on programmer’s build system (Maven or SBT) and Spark 

version. Here's a breakdown for both scenarios: 

Using Maven: 

1. Check Spark Version: Ensure you know your exact Apache Spark version. Deequ has 

different versions compatible with various Spark releases. 

2. Add Deequ Dependency: In your project's pom.xml file, add the following dependency 

section, replacing <version> with the appropriate Deequ version based on your Spark 

version. 

For Spark 3.1.x: 

XML 

<dependency> 

  <groupId>com.amazon.deequ</groupId> 

  <artifactId>deequ</artifactId> 

  <version>2.0.0-spark-3.1</version> 

</dependency> 

 

Using SBT: 

1. Check Spark Version (same as Maven): Identify your Spark version. 

2. Add Deequ Dependency: In progarmmer’s build.sbt file, add the following line, again 

replacing <version> with the compatible Deequ version for your Spark. 

For Spark 3.1.x: 

libraryDependencies += "com.amazon.deequ" % "deequ" % "2.0.0-spark-3.1" 
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Important points to remember: 

• Refer to the Deequ documentation for the latest version information and compatible Spark 

versions: https://github.com/awslabs/deequ 

• If the programmer is using an older Spark version (below 3.1), he willl need to use a Deequ 

1.x version (consult Deequ documentation for details). 

• Make sure the program system has Java 8 installed, as Deequ depends on it. 

By following these steps and considering the compatibility aspects, the programmer should be able 

to successfully install Amazon Deequ on the Hadoop Spark environment. 

6. Using data for testing of Amazon Deequ 

Data selection for testing Amazon Deequ depends on the specific aspects the designer wants to 

evaluate. Here are some approaches to consider: 

1. Sample Data: 

o The designer can leverage sample datasets from Deequ's documentation or GitHub 

repository https://github.com/awslabs/deequ. These samples showcase basic usage 

and cover various data types. 

o If the designer has an existing small-scale dataset mirroring your production data 

structure, that can also work for initial testing Deequ's functionalities. 

2. Synthetic Data Generation: 

o Tools like Apache Spark's sql.functions or libraries like ScalaTest provide 

functions to generate synthetic data with specified characteristics. This allows the 

designer to test Deequ's behavior on data with controlled distributions and outliers. 

3. Real-world Data Snippets: 

o Extract a limited portion of anonymized data from the production environment. 

Ensure it represents the data structure and potential quality issues you expect in the 

actual use case. 

Remember, Deequ is built for Apache Spark and works on tabular data. So, the designer’s chosen 

data should be transformable into a Spark DataFrame. 

Here are some additional tips for selecting data for Deequ testing: 

• Focus on data types in use: If the data contains specific data types (e.g., dates, 

geolocations), include them in the test data to ensure Deequ handles them correctly. 

• Simulate potential issues: Introduce controlled errors or missing values in the test data to 

verify Deequ identifies these quality problems. 

• Consider data size: While Deequ is designed for large datasets, start with a manageable 

size for initial testing before scaling up. 

 

https://github.com/awslabs/deequ
https://github.com/awslabs/deequ
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7. Conversion of HDFS data to a Spark DataFrame 

To convert HDFS data to a Spark DataFrame, the programmer can use the spark.read method with 

the appropriate file format and HDFS path. Here are a few examples: 

7.1. Reading a CSV file from HDFS: 

booksSchema = StructType() \ 

     .add("id", "integer") \ 

     .add("book_title", "string") \ 

     .add("publish_or_not", "string") \ 

     .add("technology", "string") 

booksdata = spark.read.csv("hdfs://localhost:9000/dezyre_books", schema=booksSchema) 

booksdata.show(5) 

 

This code snippet reads a CSV file from the HDFS path hdfs://localhost:9000/dezyre_books and 

assigns the specified schema to the DataFrame . 

 

7.2. Reading a text file from HDFS: 

 

df = spark.read.text("hdfs://nn1home:8020/text01.txt") 

 

This code snippet reads a text file from the HDFS path hdfs://nn1home:8020/text01.txt and creates 

a DataFrame with a single column named "value". 

 

7.3. Reading a JSON file from HDFS: 

 

df = spark.read.json("hdfs://nn1home:8020/file.json") 

 

This code snippet reads a JSON file from the HDFS path hdfs://nn1home:8020/file.json and 

creates a DataFrame with a schema inferred from the input file. 

 


