
Page 1 of 15

Guide for Data Quality Management in an infrastructure

complex of Hadoop clusters integrated with a

Supercomputer

Contents
1. Integration of Big data system HADOOP with Supercomputer ... 2

2. Architecture of Hadoop system supporting Entrance Data Management 4

3. Essence of DEEQU Library .. 6

4. Main operations for Data Quality Management with Deequ Library 11

4.1. Metrics Computation: .. 11

4.2. Constraint Verification: ... 11

4.3. Constraint Suggestion: ... 12

4.4. Anomaly Detection: ... 12

4.5. Use Metrics Repository (Persistence and Querying): .. 12

4.6. Incremental Metrics Computation: .. 13

5. How to install Amazon Deequ on Hadoop Spark ... 13

6. Using data for testing of Amazon Deequ .. 14

7. Conversion of HDFS data to a Spark DataFrame ... 15

7.1. Reading a CSV file from HDFS: ... 15

7.2. Reading a text file from HDFS: ... 15

7.3. Reading a JSON file from HDFS: ... 15

Page 2 of 15

1. Integration of Big data system HADOOP with a

Supercomputer

In NCC Bulgaria, a Big Data System HADOOP managed by UNWE is integrated with

Supercomputer located in Tech Park Sofia for the purpose of extensive and complex processing.

The exact structure of the Big Data System is consisting of 4 Hadoop clusters – Centralized one

located in UNWE with about 4,5 PB disk space and 3 other Hadoop clusters located in Technical

university Gabrovo, in Plovdiv university and in University Ruse- fig.1

Fig. 1

Generally, the role of the presented infrastructure is to provide the necessary Data security and to

provide Data quality. While in this Guide we will not emphasis on Data security, the focus of Data

Quality Management is on the functioning concentrated on the Big Data Hadoop clusters (HPDA

systems). Data Quality Management is provided on 2 phases: Entrance Data Management and

Final Data Management – fig.2.

Page 3 of 15

Fig.2

Entrance Data Management provides Data collection using all main networks – MAN, WAN,

GSM 4G/5G, LoRaWAN and International LoRaWAN as TTN. The process of collection is

organized in 2 ways – storing of data (mainly structured and semi-structured data, as well as some

non-structured data as pictures and graphics) and passing true data streams (mainly video and

audio). After data is collected, it goes to Initial enrichment and Check and execute Data quality.

When integrating a Big data system as Hadoop system with a Supercomputer, Initial data

enrichment plays a crucial role in preparing raw data for high-performance computing workflows.

The Initial enrichment covers:

- Extract data from one or more original sources – through the mentioned 5 types of multi-

source networks;

- Transform data into the way processing processes require it - grouping, standardizing,

sorting, sorting, merging, recoding, creating surrogate keys;

- Load data into respective processing storage - full load, incremental load, default load,

overlap load, interval load;

- Provide a unified point of view - provides a unified view of the data, aggregation, formation

of information-knowledge from the data;

- Provide historical context - creates a long-term view of data so that older data sets can be

viewed alongside newer data, as well as whether the new data matches the content of the

old data.

The execution of Data Quality consists of 2 steps – Discovering of the level of the quality and

Correction of data to the appropriate level of quality – execution of the needed quality. This covers

the following elements of the Data quality:

i. Accuracy - verifiable source

ii. Completeness - provides all necessary values

iii. Consistency - the existence of some data requires the existence of other specified data

iv. Validity - collection is against specified business rules, in a specified format and range

v. Uniqueness - no duplication or overlapping of values

Page 4 of 15

vi. Timeliness - data exists when needed for use

According to MIT, correcting data quality and removing errors from poor-quality data ensures an

average of 15%-25% of companies' annual revenue, and at the same time, according to IBM,

maintaining Data Quality requires billions of USD per year worldwide. For this reason, the main

attention of the current Guide is on Data Quality Management, applying Hadoop clusters as

entrance point to the data before treatment of the Supercomputers (High Performance computers).

2. Architecture of Hadoop system supporting Entrance Data

Management

The IT Architecture of Hadoop system (one or a few Hadoop clusters) supporting the Entrance

Data Management in a complex Hadoop-Supercomputer is presented in figure 3.

Fig.3

This Architecture was developed and tested in the Scientific Infrastructure of the Centralized

Hadoop cluster in UNWE.

The hearth of the approach is using Spark for Hadoop working together with MS SQL Server,

where Spark is installed in many as possible Hadoop data nodes. The purpose of such Spark

process is to provide metrics for the data and all data to be evaluate according of these metrics.

Example of such metrics are: Content Constraints (min, max, average, count), checks (>, <, =,

metric-target value, metric-metric), metric format and value, blanks allowed, amount rejected,

number of data/sec, t-per-generation, function on filling in empty field, allowed uniqueness. These

metrics will be applied in Spark script, receiving as a result for each data item appropriate levels

from the 6 Levels of Data quality: Accuracy, Completeness, Consistency, Validity, Uniqueness,

Timeliness. There are 2 types of Entrance Data Management – Process based and AI based.

Process based data quality management is recommended for structured and semi-structured data,

while AI based data quality management is recommended for semi-structured and non-structured

data.

The incoming data is stored in HDFS (core Hadoop file system) and from there data is transferred

or to Spark DataFrames for treating by Spark, or to MS SQL Server files for treating by MS SQL

Server. The IT Architecture for the process of Metrics analysis and enrichment is presented in

figure 4.

Page 5 of 15

Fig.4

In the figure are presented the recommended tools and Libraries to use for the Metrics calculation

and enrichment. It is important to mention that form the processing data quality evaluation and

enrichment, the Library Deequ - PyDeequ is used, which works only on Spark. On the figure are

mentioned the ways of providing AI based Entrance Data Management, using Machine Learning

and/or Deep Learning. The most of the data in the business requiring quality enrichment are

structured and semi-structured, and for this we will pay special attention on Procedural based

Entrance Data Management, using Deque Library.

Lambda Software Architecture is a data processing design pattern that aims to handle massive

quantities of data (Big Data) by combining both batch processing and real-time (stream) processing

methods using 2 paths for each processing. It's designed to provide a comprehensive, accurate, and

low-latency view of data, addressing the challenges of processing large volumes of rapidly

generated information. The Batch path is responsible for processing all historical data. It stores the

master dataset (an immutable, append-only record of all data) and pre-computes results (batch

views) from this complete dataset. The Real-time path handles real-time data that hasn't yet been

processed by the batch layer. It processes data streams as they arrive, providing low-latency, near

real-time insights. Due to its focus on speed, the views generated by the Real-time path might be

less accurate or complete than those from the batch path. The results from Batch path and Real-

time path is integrated into a Service path, integrating data from both paths and making the

processed data available for queries to end-users and applications. In our Guide, we recommend

using and we have used Apache HBase. In the Lambda Software Architecture New the incoming

data is fed into both the Batch path and the Real-time simultaneously. The Batch path processes

this data along with all historical data to create accurate, pre-computed views. The Real-time path

processes the incoming data in real-time to provide immediate, though potentially less precise,

insights. The Service path then combines these two sets of views, allowing users to query all data,

including the most recent, with low latency. Once the Batch path has processed the data that the

Real-time path was handling, the speed layer's temporary views for that data are superseded.

Lambda Software Architecture is well-suited for scenarios requiring both historical analysis and

immediate insights from large datasets, like: Social Media Analytics (Sentiment analysis, trend

detection), Fraud Detection (Analysing historical transaction patterns to detect anomalies in real-

time), IoT Data Analytics (Processing sensor data for predictive maintenance, real-time

Page 6 of 15

monitoring), Personalized Marketing Campaigns (Analysing customer behaviour to deliver real-

time recommendations), Real-time Dashboards and Reporting (Providing up-to-date business

intelligence).

3. Essence of DEEQU Library

Deequ Library provides a robust and scalable framework for integrating data quality checks

directly into your data pipelines, helping to ensure the reliability and trustworthiness of your data.

The essence of the Deequ library can be summarized as "unit tests for data" at scale, built on

Apache Spark.

Here's a breakdown of its key components and purpose:

• Unit Tests for Data: Just like a programmer writes unit tests for the code to ensure it

behaves as expected, Deequ allows to define "unit tests" for the data. These tests are

expressed as constraints that specify what constitutes "good" data.

• Data Quality Measurement: Deequ measures various aspects of data quality by

computing metrics on large datasets. These metrics can include:

o Completeness: Are there missing values?

o Uniqueness: Are there duplicate entries where there shouldn't be?

o Validity: Do values conform to expected patterns or ranges (e.g., "high" or "low"

for a priority column, non-negative numbers)?

o Consistency: Are relationships between columns as expected (e.g., correlation)?

o Schema conformance: Does the data adhere to its expected structure (column

names, types)?

• Built on Apache Spark: Deequ leverages the distributed processing power of Apache

Spark, making it suitable for analyzing and validating very large datasets (billions of

rows) efficiently. This is crucial for big data environments.

• Proactive Error Detection: The core idea is to find data errors early in the data pipeline,

before the data is consumed by downstream systems, machine learning models, or used for

critical business decisions. By catching issues early, a programmer can "quarantine" and

fix bad data, preventing cascading failures or incorrect outputs.

• Key Functionality:

o Metrics Computation: Automatically calculates various data quality statistics

(e.g., min, max, mean, completeness, distinctness, correlation).

o Constraint Verification: Allows users to define custom data quality rules

(constraints) and then verifies if the data satisfies these rules. It generates a report

indicating successes and failures.

Page 7 of 15

o Constraint Suggestion: Can automatically profile data and suggest a set of

reasonable constraints based on the observed data patterns, helping users get started

quickly.

o Metrics Repository: Provides mechanisms to persist and track data quality metrics

over time, enabling monitoring and anomaly detection.

o Anomaly Detection: Can be used to detect unusual changes in data quality metrics

over time, signaling potential data issues.

In Deequ Library there are Methods for assessing data quality through specific quality parameters,

where one method is used for one quality parameter. The set of methods are:

• ApproxCountDistinct

• ApproxQuantile

• ApproxQuantiles

• Completeness

• Compliance

• Correlation

• CountDistinct

• DataType

• Distinctness

• Entropy

• Maximum

• Mean

• Minimum

• MutualInformation

• PatternMatch

• Size

• Sum

• UniqueValueRatio

• Uniqueness

Each method accepts external data and generate as a result - the corresponding estimate via the

parameter.

Page 8 of 15

Before we define checks on the data, we want to calculate some statistics on the dataset; we call

them metrics. Deequ supports the following metrics – Table 1.

Table 1

Metric Description Usage Example

ApproxCountDistinct

Approximate number of

distinct value, computed

with

HyperLogLogPlusPlus

sketches.

ApproxCountDistinct("review_id")

ApproxQuantile
Approximate quantile of a

distribution.

ApproxQuantile("star_rating",

quantile = 0.5)

ApproxQuantiles
Approximate quantiles of a

distribution.

ApproxQuantiles("star_rating",

quantiles = Seq(0.1, 0.5, 0.9))

Completeness
Fraction of non-null values

in a column.
Completeness("review_id")

Compliance

Fraction of rows that

comply with the given

column constraint.

Compliance("top star_rating",

"star_rating >= 4.0")

Correlation

Pearson correlation

coefficient, measures the

linear correlation between

two columns. The result is

in the range [-1, 1], where 1

means positive linear

correlation, -1 means

negative linear correlation,

and 0 means no correlation.

Correlation("total_votes",

"star_rating")

CountDistinct Number of distinct values. CountDistinct("review_id")

DataType Distribution of data types

such as Boolean,
DataType("year")

Page 9 of 15

Fractional, Integral, and

String. The resulting

histogram allows filtering

by relative or absolute

fractions.

Distinctness

Fraction of distinct values

of a column over the

number of all values of a

column. Distinct values

occur at least once.

Example: [a, a, b] contains

two distinct values a and b,

so distinctness is 2/3.

Distinctness("review_id")

Entropy

Entropy is a measure of the

level of information

contained in an event

(value in a column) when

considering all possible

events (values in a

column). It is measured in

nats (natural units of

information). Entropy is

estimated using observed

value counts as the

negative sum of

(value_count/total_count)

*

log(value_count/total_cou

nt). Example: [a, b, b, c, c]

has three distinct values

with counts [1, 2, 2].

Entropy is then (-

1/5*log(1/5)-2/5*log(2/5)-

2/5*log(2/5)) = 1.055.

Entropy("star_rating")

Maximum Maximum value. Maximum("star_rating")

Mean
Mean value; null values are

excluded.
Mean("star_rating")

Page 10 of 15

Minimum Minimum value. Minimum("star_rating")

MutualInformation

Mutual information

describes how much

information about one

column (one random

variable) can be inferred

from another column

(another random variable).

If the two columns are

independent, mutual

information is zero. If one

column is a function of the

other column, mutual

information is the entropy

of the column. Mutual

information is symmetric

and nonnegative.

MutualInformation(Seq("total_vote

s", "star_rating"))

PatternMatch

Fraction of rows that

comply with a given

regular experssion.

PatternMatch("marketplace",

pattern = raw"\w{2}".r)

Size
Number of rows in a

DataFrame.
Size()

Sum
Sum of all values of a

column.
Sum("total_votes")

UniqueValueRatio

Fraction of unique values

over the number of all

distinct values of a column.

Unique values occur

exactly once; distinct

values occur at least

once. Example: [a, a, b]

contains one unique value

b, and two distinct values a

and b, so the unique value

ratio is 1/2.

UniqueValueRatio("star_rating")

Page 11 of 15

Uniqueness

Fraction of unique values

over the number of all

values of a column. Unique

values occur exactly

once. Example: [a, a, b]

contains one unique value

b, so uniqueness is 1/3.

Uniqueness("star_rating")

4. Main operations for Data Quality Management with Deequ

Library

The main operations for data quality management with Deequ library can be categorized into

these core components:

4.1. Metrics Computation:

o Deequ calculates various data quality metrics (statistics) on a dataset. These

metrics provide insights into the properties of your data.

o Examples of metrics include:

▪ Size(): The total number of rows.

▪ Completeness("column_name"): The percentage of non-null values in a

column.

▪ Uniqueness("column_name"): The percentage of unique values in a

column.

▪ Distinctness("column_name"): The ratio of distinct values to the total

number of values.

▪ Minimum("column_name"), Maximum("column_name"),

Mean("column_name"), Sum("column_name"),

StandardDeviation("column_name"): Statistical measures for

numerical columns.

▪ Correlation("column1", "column2"): Measures the correlation

between two numerical columns.

▪ Compliance("column_name", "expression"): Checks if a certain

expression holds true for a column.

o Deequ leverages Spark's distributed processing capabilities to efficiently compute

these metrics on large datasets.

4.2. Constraint Verification:

o This is where the designer can define its data quality expectations as a set of

constraints. Deequ then verifies if the data adheres to these predefined constraints.

o It is possible to define checks with a Check object, specifying a CheckLevel (e.g.,

Error, Warning) and then add various constraints to it.

Page 12 of 15

o Examples of constraints that can be defined:

▪ isUnique("column_name"): Ensures all values in a column are unique.

▪ hasSize(_ >= min_size): Verifies the dataset has at least a certain

number of rows.

▪ isNotNull("column_name"): Checks for the absence of null values.

▪ hasDataType("column_name", DataType.StringType): Verifies the

data type of a column.

▪ hasMin("column_name", min_value): Checks if the minimum value in

a column meets a threshold.

▪ isContainedIn("column_name", Seq("value1", "value2")):

Ensures column values are from a predefined set.

▪ satisfies("column_name", "column_name > 0"): Allows defining

custom SQL-like expressions for validation.

o Deequ generates a data quality report (VerificationResult) indicating whether

each constraint passed or failed. This report can be converted to a DataFrame for

easy analysis.

4.3. Constraint Suggestion:

o If it is unsure what constraints to define, Deequ can help by automatically

suggesting potential data quality constraints based on profiling your data.

o The ConstraintSuggestionRunner profiles the data, infers patterns, and

proposes a set of meaningful constraints that you can then review and incorporate

into your verification suite. This is particularly useful for exploring new datasets

or when the designers don't have explicit data quality requirements yet.

4.4. Anomaly Detection:

o Deequ can detect anomalies in data quality metrics over time. Instead of fixed

thresholds, it can learn the normal behaviour of metrics and flag deviations as

anomalies. This is crucial for continuous data quality monitoring in evolving data

pipelines.

4.5. Use Metrics Repository (Persistence and Querying):

o Deequ provides a MetricsRepository interface to store and load computed

metrics. This allows the programmer to persist its data quality check results for

historical analysis, trend monitoring, and auditing.

o The programmer can save results to various systems, such as file systems (e.g.,

JSON), databases (e.g., InfluxDB with custom adapters), or in-memory.

Page 13 of 15

4.6. Incremental Metrics Computation:

o For large, partitioned datasets, Deequ supports incremental metrics computation.

This means it can efficiently update metrics for new or changed partitions without

re-reading the entire dataset, saving significant computational resources and time.

5. Installation steps of Amazon Deequ on Hadoop Spark

Installing Amazon Deequ on Hadoop Spark involves adding the Deequ library as a dependency to

the project. The specific steps depend on programmer’s build system (Maven or SBT) and Spark

version. Here's a breakdown for both scenarios:

Using Maven:

1. Check Spark Version: Ensure you know your exact Apache Spark version. Deequ has

different versions compatible with various Spark releases.

2. Add Deequ Dependency: In your project's pom.xml file, add the following dependency

section, replacing <version> with the appropriate Deequ version based on your Spark

version.

For Spark 3.1.x:

XML

<dependency>

 <groupId>com.amazon.deequ</groupId>

 <artifactId>deequ</artifactId>

 <version>2.0.0-spark-3.1</version>

</dependency>

Using SBT:

1. Check Spark Version (same as Maven): Identify your Spark version.

2. Add Deequ Dependency: In progarmmer’s build.sbt file, add the following line, again

replacing <version> with the compatible Deequ version for your Spark.

For Spark 3.1.x:

libraryDependencies += "com.amazon.deequ" % "deequ" % "2.0.0-spark-3.1"

Page 14 of 15

Important points to remember:

• Refer to the Deequ documentation for the latest version information and compatible Spark

versions: https://github.com/awslabs/deequ

• If the programmer is using an older Spark version (below 3.1), he willl need to use a Deequ

1.x version (consult Deequ documentation for details).

• Make sure the program system has Java 8 installed, as Deequ depends on it.

By following these steps and considering the compatibility aspects, the programmer should be able

to successfully install Amazon Deequ on the Hadoop Spark environment.

6. Using data for testing of Amazon Deequ

Data selection for testing Amazon Deequ depends on the specific aspects the designer wants to

evaluate. Here are some approaches to consider:

1. Sample Data:

o The designer can leverage sample datasets from Deequ's documentation or GitHub

repository https://github.com/awslabs/deequ. These samples showcase basic usage

and cover various data types.

o If the designer has an existing small-scale dataset mirroring your production data

structure, that can also work for initial testing Deequ's functionalities.

2. Synthetic Data Generation:

o Tools like Apache Spark's sql.functions or libraries like ScalaTest provide

functions to generate synthetic data with specified characteristics. This allows the

designer to test Deequ's behavior on data with controlled distributions and outliers.

3. Real-world Data Snippets:

o Extract a limited portion of anonymized data from the production environment.

Ensure it represents the data structure and potential quality issues you expect in the

actual use case.

Remember, Deequ is built for Apache Spark and works on tabular data. So, the designer’s chosen

data should be transformable into a Spark DataFrame.

Here are some additional tips for selecting data for Deequ testing:

• Focus on data types in use: If the data contains specific data types (e.g., dates,

geolocations), include them in the test data to ensure Deequ handles them correctly.

• Simulate potential issues: Introduce controlled errors or missing values in the test data to

verify Deequ identifies these quality problems.

• Consider data size: While Deequ is designed for large datasets, start with a manageable

size for initial testing before scaling up.

https://github.com/awslabs/deequ
https://github.com/awslabs/deequ

Page 15 of 15

7. Conversion of HDFS data to a Spark DataFrame

To convert HDFS data to a Spark DataFrame, the programmer can use the spark.read method with

the appropriate file format and HDFS path. Here are a few examples:

7.1. Reading a CSV file from HDFS:

booksSchema = StructType() \

 .add("id", "integer") \

 .add("book_title", "string") \

 .add("publish_or_not", "string") \

 .add("technology", "string")

booksdata = spark.read.csv("hdfs://localhost:9000/dezyre_books", schema=booksSchema)

booksdata.show(5)

This code snippet reads a CSV file from the HDFS path hdfs://localhost:9000/dezyre_books and

assigns the specified schema to the DataFrame .

7.2. Reading a text file from HDFS:

df = spark.read.text("hdfs://nn1home:8020/text01.txt")

This code snippet reads a text file from the HDFS path hdfs://nn1home:8020/text01.txt and creates

a DataFrame with a single column named "value".

7.3. Reading a JSON file from HDFS:

df = spark.read.json("hdfs://nn1home:8020/file.json")

This code snippet reads a JSON file from the HDFS path hdfs://nn1home:8020/file.json and

creates a DataFrame with a schema inferred from the input file.

